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A. BINOMIAL TEST

Data: We observe the outcomes of n independent repeated Bernoulli Trials.

Assumptions:

1. The outcome of each trial can be classified as a success or a failure.

2. The probability of a success, denoted by p, remains constant from trial to trial.

3. The n trials are independent.

Target: To make inference about “p”.

1) To Test:


H0 : p = p0

V s.

H0 : p > p0

, where 0 < p0 < 1

Let B =No. of successes.
We may use B as our test statistic because the statistic

B

n
is an estimator of the True unknown

parameter p. Thus, if p > p0,
B

n
will tend to be larger than p0. thus suggests rejecting H0 : p > p0

in favoir of p > p0 for large values of B.

I Exact Distribution of B:

B =
n∑
i=1

di

where, di =

{
1 , if the ith Bernoulli trial is a success

0 , if the ith Bernoulli trial is a failure

Total no. of possible outcomes (d1, d2, d3, . . . , dn) is = 2n.
Any outcomes with b times 1’s and (n− b) times 0’s has probability pb(1− p)n−b.
[ Here the position of 1’s and 0’s are fixed ]

Pp[B = b] =


(
n

b

)
pb(1− p)n−b , for b = 0, 1, 2, . . . , n

0 , otherwise

1 Instructor: KC



Presidency University

Ep(B) = Ep(
n∑
i=1

di)

=
n∑
i=1

Ep(di)

= np

Also it can be shown that,

V arp(B) = np(1− p)

I The Asymptotic Distribution of B:

The random variable B is a sum of independent and identically distributed random variables and hence

the central limit theorem establishes that as n→∞,
B − np√
np(1− p)

has a limitingN(0, 1) distribution.

I Testing Criterion:

Reject H0 at the α level of significance if B ≥ bα; otherwise do not reject, where the constant bα is
chosen such that,

P (B ≥ bα|H0) = α

i.e. P (B ≥ bα|B ∼ Bin(n, p0)) = α · · · · · · · · · (1)

i.e. bα is the upper α percentile point of the binomial distribution with sample size n and success
probability p.

Due to the discreteness of binomial distribution, not all the values of α are available i.e. we can’t
always find a bαwhich satisfies (1) for any arbitrary choice of α.

So, we focus on finding a bα such that

P (B ≥ bα|H0) ≤ α · · · · · · · · · (2)

[ choose the smallest bαwhich satisfies (2) ]

This is a one-sided upper tail test.

2) To Test:


H0 : p = p0

V s.

H0 : p < p0

, where 0 < p0 < 1
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I Testing Criterion:

Reject H0 at the α level of significance in favour of H1 if B ≤ cα; otherwise do not reject, where cα
is chosen such that,

P (B ≤ cα|H0) = α

i.e. P (B ≤ cα|B ∼ Bin(n, p0)) = α · · · · · · · · · (3)

i.e. bα is the upper α percentile point of the binomial distribution with sample size n and success
probability p.

Again, due to some discreteness issue, we focus on the following rather than (3), i.e. choose cα such
that

P (B ≤ cα|H0) ≤ α · · · · · · · · · (4)

[ choose the largest cαwhich satisfies (4) ]

• If p0 =
1

2
, then cα = n− bα.

This is a one-sided lower tail test.

3) Similary for testing,


H0 : p = p0

V s.

H0 : p 6= p0

, where 0 < p0 < 1

Reject H0 at the α level of significance if B ≥ bα1 or B ≤ cα2 ; otherwise do not reject.
Where bα1 is the upperα1 percentile point and cα2 is the lowerα2 percentile point andα1 + α2 = α.

Remarks :

1. Binomial test is a distribution free test.

Reason : Apart from the mild assumptions (1) - (3) , the probability distribution of B does not
depend on the underlying population from which the dichotomous data comes.

Applications :

Target: To test hypothesis about the unknown median θ , of a population. The application of
binomial theory to this problem leads to a test statisticB, that counts the number of sample observation
larger than a specified null hypothesis value of θ, say θ0.

For this particular special case, the statistic B is referred to as the sign statistic and the associated
test procedures are referred to as sign test procedures.
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B. Wilcoxon Signed-Rank Test

The ordinary sign test does not make use of the magnitude of the difference between the observed
value and the assumed value of the quantile. The Wilcoxon signed rank test provides an alternative test
of location by taking into account the magnitude of the difference as well as their sign and as such is
more efficient than ordinary sign test.

I Kinds of data we deal with :

1. Paired replicates data represent pair of “pre-treatment” and “post-treatment” observations;
here we are concerned with a shift in location due to the application of the “treatment”.

2. One sample data, counts of observations from a single population whose location we wish to make
inferences.

I Paired Replicates Analysis :

Data: We obtain 2n observations, two observations on each of n subjects.

Subject i: 1 2 3 · · · n

Xi : X1 X2 X3 · · · Xn

Yi : Y1 Y2 Y3 · · · Yn

Assumptions:

1. We let Zi = Yi −Xi for i = 1(1)n. The Zi’s are mutually independent.

2. Each Zi, i = 1(1)n, comes from a continuous population (not necessarily the same are) that is
symmetric about a common median θ; i.e.

i.e. Fi(θ + t) = 1− Fi(θ − t) ∀ t ∈ R and ∀ i = 1(1)n

⇐⇒ Fi(θ + t) + Fi(θ − t) = 1 ∀ t ∈ R and ∀ i = 1(1)n

Symmetric and Continuous pdf of Z

Support of Z

pd
f o

f X
,  

i.e
. f

(z
)

θ θ + tθ − t

Fi(θ − t)

Fi(θ + t)
fi(z)
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The parameter θ is refered to as the treatment effect.

Target :

We have to test,

H0 : θ = 0 V s.


a) H1 : θ > 0

b) H2 : θ < 0

c) H3 : θ 6= 0

H0 implies there is zero shift in location due to treatment. That is, each of the distributions (not
necessarily same) for the differences (Yi −Xi) is symmetrically distributed about 0.

Procedure :

1. Find the absolute values |Z1|, |Z2|, . . . , |Zn|.

2. Order them from least to greatest.

3. Define, Ri = Rank of |Zi|, i = 1(1)n in the ordering.

4. Define, di =

{
1 if Zi > 0

0 if Zi < 0

Theoretically, Pr[Zi = 0] = 0

Ridi is known as the positive signed rank of |Zi|.

5. Test Statistic :

The Wilcoxon signed rank statistic T+ is that the sum of the positive signed ranks,
namely,

T+ =
n∑
i=1

Ridi

(a) To test H0 : θ = 0 Vs. H1 : θ > 0.
Reject H0 at the α level of significance if T+ ≥ tα; otherwise do not reject H0.

Q.) How do we determine tα?

Choose tα such that PH0[T
+ ≥ tα] = α · · · · · · · · · · · · · · · (1).

But due to the discreteness of the distribution of T+, it is not always possible to find tα for
an arbitrary choice of α that satisfies (1).
Therefore we choose tα such that PH0[T

+ ≥ tα] ≤ α.

This is nothing but a one-sided upper tail test.
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(b) To test H0 : θ = 0 Vs. H2 : θ < 0.

Reject H0 at the α level of significance if T+ ≤
n(n+ 1)

2
− tα; otherwise do not reject

H0.

(c) To test H0 : θ = 0 Vs. H1 : θ 6= 0.

Reject H0 at the α level of significance if T+ ≥ tα
2
or T+ ≤

n(n+ 1)

2
− tα

2
; otherwise do

not reject H0.

Q.) How do we determine tα
2
?

Choose tα
2
such that PH0[T

+ ≥ tα
2
] ≤

α

2
· · · · · · · · · · · · · · · (2).

But due to the discreteness of the distribution of T+, it is not always possible to find tα
2
for

an arbitrary choice of α that satisfies (2).
Therefore we choose tα

2
such that PH0[T

+ ≥ tα
2
] ≤

α

2
.

This is nothing but a upper tail test of two-sided test.

Null Distribution of T+ (No ties case) :

Define, B = No. of positive Zi’s.
Let r1 < r2 < . . . < rB denote the ordered ranks of the absolute values of these positive Zi’s.

Then the null distribution of T+ can be obtained directly from the representation T+ =
B∑
i=1

ri.

Under the assumption that the underlying Zi distributions are all continuous, the probabilities are
zero that there are ties among the absolute values of Zi’s or that any of the Zi are exactly zero.

In addition, under H0, these underlying Zi distributions are all symmetric about θ = 0.
It follows that undserH0, each of the 2n possible outcomes for the ordered configuration (r1, r2, . . . , rB)

occurs with probability
1

2n
.

E.g. n = 3; therefore 23 = 8 possible outcomes for (r1, r2, . . . , rB).

B (r1, r2, . . . , rB) Probability under H0 T+ =
B∑
i=1

ri

0 − 1/8 0
1 r1 = 1 1/8 1
1 r1 = 2 1/8 2
1 r1 = 3 1/8 3
2 r1 = 1, r2 = 2 1/8 3
2 r1 = 1, r2 = 3 1/8 4
2 r1 = 2, r2 = 3 1/8 5
3 r1 = 1, r2 = 2, r3 = 3 1/8 6

So, clearly,

T+ = t : 0 1 2 3 4 5 6
PH0[T

+ = t] : 1/8 1/8 1/8 2/8 1/8 1/8 1/8
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The event T+ = 3 corresponds to


B = 1 & r1 = 3

or,

B = 2 & r1 = 1, r2 = 2
Note :

• The test procedure is based on T+ are called distribution free procedure.

Reason ?

Answer: We have derived the null distribution of T+ without specifying the forms of the un-
derlying Z populations under H0 beyond the point of requiring that they are continuous and
symmetric about “0”.

I Mean and Variance of T+ under H0:

T+ =
B∑
i=1

ri

T+ d
=

B∑
i=1

Vi

where V1, V2, . . . Vn are mutually independent dichotomous random variables, with probability dis-
tribution,

P [Vi = i] = P [Vi = 0] = 1/2,i = 1(1)n

∴ EH0(T
+) = E

( n∑
i=1

Vi

)

=
n∑
i=1

E(Vi)

=
n∑
i=1

[
i.(1/2) + 0.(1/2)

]
=

n∑
i=1

i

2

=
n(n+ 1)

4

Also,

V arH0(T
+) = V ar

( n∑
i=1

Vi

)

=
n∑
i=1

V ar(Vi)
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But,

V ar(Vi) = E
(
V 2
i

)
−
(
E(Vi)

)2
=
(
i2.

1

2
+ 02.

1

2

)
−
( i
2

)2
=
i2

4

∴ V arH0(T
+) =

n∑
i=1

i2

4

=
n(n+ 1)(2n+ 1)

24

Note :
The assymptotic normality of the standardized form

T ∗ =
T+ − EH0(T

+)(
V arH0(T

+)
)1/2

follows Lyapunov Central Limit Theorem.

Remarks :

1. T+ + T− =
n∑
i=1

n(n+ 1)

2

Test statistics based on T+ only, T− only, or T+ + T− are linearly related and therefore equivalent
in terms.

2. To use the signed rank statistic in hypothesis testing, the entire null distribution is not necessary.
Infact, one set of critical values is sufficient for even a two sided test, because of the relations

T+ + T− =
n∑
i=1

n(n+ 1)

2
and the symmetry of T+ about

n(n+ 1)

4
.

3. Large values of T+ corresponds to small values of T− and furthermore T+ d
= T− under H0.

Proof :

PH0[T
+ ≥ c] = PH0[T

+ −
n(n+ 1)

4
≥ c−

n(n+ 1)

4
]

= PH0[
n(n+ 1)

4
− T+ ≥ c−

n(n+ 1)

4
]

= PH0[
n(n+ 1)

2
− T+ ≥ c]

= PH0[T
− ≥ c]

So, we can write T+ d
= T− under H0.
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In the case where two or more absolute values of differences are equal, i.e. |Zi| = |Zj| for at least
one i 6= j, the observations are tied. the first and most possibility is to discard all tied observations
and reduce the sample size accordingly. This method certainly leads to a loss of information, but if the
number of observations to be omitted is small relative to the sample size, the loss may be minimal.

Another approach is to use mid-rank method.

Q.) What is mid-rank method?
The mid-rank method assigns to each member of a group of tied observations the simple average

of the ranks they would have if distinguishable. Using this approach, tied observations are given tied
ranks.

Remarks :

1. The mid-rank method affects the null distribution of ranks. The mean rank is unchanged, but the
variance of the ranks is redeuced.

2. Coming back to Wilcoxon signed rank test, the probability distribution of T+ is clearly not the
same in the presence of tied ranks, but the effect is generally slight and no correction needs to be
made unless the ties are quite extensive.

I Correction of Variance according to ties :

Suppose that “t” observations are tied for a given rank, say “s+ 1” and that if they would be given

the ranks s+ 1, s+ 2, · · · , s+ t. The mid-rank is they s+
t+ 1

2
and the sum of squares of these

ranks is,

(s+
t+ 1

2
)2 + (s+

t+ 1

2
)2 + · · ·+ (s+

t+ 1

2
)2︸ ︷︷ ︸

( t times )

=t(s+
t+ 1

2
)2

=t{s2 + s(t+ 1) +
(t+ 1)2

4
}

If these ranks had not been tied, their sum of squares would have been ,

t∑
i=1

(s+ i)2 = ts2 + ts(t+ 1) +
t(t+ 1)(2t+ 1)

6

The presence of these “t” ties then decrease the sum of squares by,

t(t+ 1)(2t+ 1)

6
−
t(t+ 1)2

4

=
t(t+ 1)(t− 1)

12

=
t(t2 − 1)

12
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A bit of algebra leads to a reduced variance,

V ar(T+|H0) =
n(n+ t)(2n+ 1)

24
−
∑
t

t(t2 − 1)

48

,where the sum is extended over all sets of “t” ties. This is called the correction for ties.

� Confidence-Interval Procedures :

As with the ordinary one-sample sign test, the Wilcoxon signed-rank procedure lends itself to confidence-
interval estimation of the unknown population median M . The confidence limits are those values of M
which do not lead to rejection of the null hypothesis. To find these limits for any sample size N , we
first find the critical value tα/2 such that if the true population median is M and T is calculated for the
derived sample values Xi −M , then

P (T+ ≤ tα/2) = α/2 and P (T− ≤ tα/2) = α/2

The null hypothesis will not be rejected for all numbers M which make T+ > tα/2 and T− > tα/2.
The confidence-interval technique is to use trial and error to find those two numbers, say M1 and M2

where M1 < M2, such that when T is calculated for the two sets of differences Xi −M1 and Xi −M2,
at significance level α, T+ or T−, whichever is smaller, is just short of significance, i.e., slightly larger
than tα/2. This generally does not lead to a unique interval, and the manipulations can be tedious even
for moderate sample sizes.

This technique is best illustrated by an example. The following eight observations are drawn from a
continuous, symmetric population:

−1, 6, 13, 4, 2, 3, 5, 9 . . . . . . . . . . . . . . . (a)

For N = 8 the two-sided rejection region of nominal size 0.05 was found earlier to be tα/2 = 3 with
exact significance level

α = P (T+ ≤ 3) + P (T− ≤ 3) = 10/256 = 0.039

We try six different values for M and calculate T+ or T−, whichever is smaller, for the differences
Xi −M . The example illustrates a number of difficulties which arise. In the first trial choice of M , the
number 4 was subtracted and the resulting differences contained three sets of tied pairs and one zero
even though the original sample contained neither ties nor zeros. If the zero difference is ignored, N
must be reduced to 7 and then the tα/2 = 3 is no longer accurate for α = 0.039.
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Table :

Trial-and-Error Determination of Endpoints :

Xi Xi − 4 Xi − 1.1 Xi − 1.5 Xi − 9.1 Xi − 8.9 Xi − 8.95

-1 -5 -2.1 -2.5 -10.1 -9.9 -9.95
6 2 4.9 4.5 -3.1 -2.9 -2.95
13 9 11.9 11.5 3.9 4.1 4.05
4 0 2.9 2.5 -5.1 -4.9 -4.95
2 -2 0.9 0.5 -7.1 -6.9 -6.95
3 -1 1.9 1.5 -6.1 -5.9 -5.95
5 1 3.9 3.5 -4.1 -3.9 -3.95
9 5 7.9 7.5 -0.1 0.0 0.05

T+ or T− 3 3.5 3 5 5

The midrank method could be used to handle the ties, but this also disturbs the accuracy of tα/2.
Since there seems to be no real solution to these problems, we try to avoid zeros and ties by judicious
choices for our M values for subtraction. These data are all integers, and hence a choice for M which
is not an integer obviously reduces the likelihood of ties and makes zero values impossible. Since T−
for the differences Xi − 1.5 yields T− = 3.5 using the midrank method, we will choose M1 = 1.5. The
next three columns represent an attempt to find an M which makes T+ around 4. These calculations
illustrate the fact that M1 and M2 are far from being unique. Clearly M2 is in the vicinity of 9, but
the differences Xi − 9 yield a zero. We conclude there is no need to go further. An approximate 96.1%
confidence interval on M is given by 1.5 < M < 9. The interpretation is that hypothesized values of M
within this range will lead to acceptance of the null hypothesis for an exact significance level of 0.039.

This procedure is undoubtedly tedious, but the limits obtained are reasonably accurate. The numbers
should be tried systematically to narrow down the range of possibilities. Thoughtful study of the
intermediate results usually reduces the additional number of trials required.

A different method of construction which leads to a unique interval and is much easier to apply
is described in Noether [(1967), pp. 57-58]. The procedure is to convert the interval T+ > tα/2 and
T− > tα/2 to an equivalent statement on M whose end points are functions of the observations Xi.
For this purpose we must analyze the comparisons involved in determining the ranks of the differences
r(|Xi−M0|) and the signs of the differencesXi = M0 since T+ and T− are functions of these comparisons.
Note that the rank of any random variable in a set {V1, V2, ..., Vw} can be written symbolically as

r(Vi) =
N∑
k=1

S(Vi − Vk) + 1

where

S(u) =

{
1 if u > 0

0 if u ≤ 0

To compute a rank, then we make
(
N
2

)
comparisons of pairs of different numbers and one comparison

of a number with itself. To compute the sets of all ranks, we make
(
N
2

)
comparisons of pairs and N

identity comparisons, a total of
(
N
2

)
+N = N(N + 1)/2 comparisons. Substituting the rank function in

(7.1), we obtain

11 Instructor: KC



Presidency University

T+ =
N∑
i=1

Zir

=
N∑
i=1

Zi +
N∑
i=1

∑
k 6=i

ZiS(|Xi −M0| − |Xk −M0|) . . . . . . . . . . . . . . . (b)

Therefore these comparisons affects T+ as follows :

1. A comparison of |Xi −M0| with itself adds 1 to T+ if Xi −M0 > 0.

2. A comparison of |Xi−Mo| > 0 with |Xk−M0| for any i 6= k adds 1 to T+ if |Xi−M0| > |Xk−M0|
and Xi −M0 > 0, that is, Xi −M0 > |Xk −M0|. If Xk −M0 > 0, this occurs when Xi > Xk,
and if Xk −M0 < 0, we have Xi +Xk > 2M0 or (Xi +Xk)/2 > M0. But when Xi −M0 > 0 and
Xk −M0 > 0, we have (Xi +Xk)/2 > M0 also.

Combining these two results, then, (Xi +Xk)/2 > M0 is a necessary condition for adding 1 to T+ for all
i, k. Similarly, if (Xi +Xk)/2 < M0, then this comparison adds 1 to T−. The relative magnitudes of the
N(N + 1)/2 averages of pairs (Xi +Xk)/2 for all i ≤ k, called the Walsh averages, then determine the
range of values for hypothesized numbersM0 which will not lead to rejection of H0. If these N(N +1)/2
averages are arranged as order statistics, the two numbers which are in the (tα/2 + 1) position from
either end are the endpoints of the 100(1− α)% confidence interval on M . Note that this procedure is
exactly analogous to the ordinary sign-test confidence interval except that here the order statistics are
for the averages of all pairs of observations instead of the original observations.

The data in (a) for N = 8 arranged in order of magnitude are -1,2,3,4,5,6,9,13, and the 36 Walsh
averages are given in Table 7.5. For exact α = 0.039, we found before that tα/2 = 3. Since the fourth
largest numbers from either end are 1.5 and 9.0, the confidence interval is 1.5 < M < 9 with exact
confidence coefficient γ = 1 − 2(0.039) = 0.922. This result agrees exactly with that obtained by the
previous8 method, but this will not always be the case since the trial-and-error procedure does not yield
unique endpoints.

The process of determining a confidence interval on M by the above method is much facilitated by
using the graphical method of construction, which can be described as follows.

Table :
Walsh averages for data in (a) :

-1.0 0.5 1.0 1.5 2.0 2.5 4.0 6.0
2.0 2.5 3.0 3.5 4.0 5.5 7.5
3.0 3.5 4.0 4.5 6.0 8.0
4.0 4.5 5.0 6.5 8.5
5.0 5.5 7.0 9.0
6.0 7.5 9.5
9.0 11.0
13.0

H0 will not be rejected ∀M which make T+ > tα
2
and T− > tα

2
.

Now what is tα
2
?

P (T+ ≤ tα
2
) = α

2
and P (T− ≤ tα

2
) = α

2
.
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� Trial and error method :

Find those 2 numbers, say M1 and M2 where M1 < M2, such that when T is calculated for the two sets
of difference, Xi−M1 and Xi−M2, at α level of significance, min{T+, T−} is just short of significance,
i.e., slightly larger than tα

2
.

This generelly does not lead to a unique interval, and the manipulations can be tedious even for
moderate sample sizes.

eg: −1, 6, 13, 4, 2, 3, 5, 9
m = 8
α = 0.05
tα/2 = 3 from table.

Exact significance level α = PH0(T
+ ≤ 3) + PH0(T

− ≤ 3) = 0.02 + 0.02 = 0.04
We try six different values of M and calculate T+ and T− whichever, for the difference Xi −M .

Xi − 4 Xi − 1.1 Xi − 1.5 Xi − 9.1 Xi − 8.9 Xi − 8.95

Here, n = 7 3 3.5 3 5 5

⇓
tα/2 = 3 is no longer accurate for α = 0.039

• Try to avoid zeroes and ties by judicious choices for our M values for substitution.

These data are all integers, and hence a choice for M which is not an integar obviously reduces the
likelihood of ties and makes zero values impossible.

H0 : M = 2 Vs. H1 : M 6= 2

Data : −3 − 6 1 9 4 10 12
α = 0.10

Target : To find confidence interval for M .

Recall: The confidence limits are those values of M which do not lead to rejection of H0.
H0 will not be rejected ∀M which make T+ > tα/2 and T− > tα/2
i.e. , min{T+, T−} > tα/2
Here α

2
= 0.05 ; tα

2
=? Pr{T+ ≤ tα

2
} = α

2
=⇒ tα

2
= 3

Let’s apply trial and error method.
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Table :

Trial-and-Error Determination of Endpoints :

Xi Xi − 2.9 Xi − 0.9 Xi − 0.4 Xi + 2.1 Xi + 3.1 Xi + 2.9

-3 -5.9 -3.9 -3.4 -0.9 0.1 -0.1
-6 -8.9 -6.9 -6.4 -4.9 -2.9 -3.1
1 -1.9 0.1 0.6 3.1 4.1 3.9
9 6.1 8.1 8.6 11.1 12.1 11.9
4 1.1 3.1 3.6 6.1 7.1 6.9
10 7.1 9.1 9.6 12.1 13.1 12.9
12 9.1 11.9 11.6 14.1 15.1 14.9

T+orT− 11 7 6 4 2 3

Here T−for the differnces ”Xi − (−2.1)” yields T− = 4 , we will choose M1 = −2.1
Now , let’s focus on finding an M which makes T+around 4.

Xi Xi − 9.9
-3 -12.9
-6 -15.9
1 -8.9
9 -0.9
4 -5.9
10 0.1
12 2.1

T+orT− 4

∴ We may take M2 = 9.9

Here exact significance level α = 2× 0.039 = 0.078
⇒ 1− α = 1− 0.078 = 0.922
∴ An approximate 92.2 C.I. on M is given by (−2.1, 9.9).

I Interpretation :

The hypothesized values of M within the range (−2.1, 9.9) will lead to acceptance of the H0 for exact
significance level 0.078.
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C. Order Statistics

Let X1, X2, . . . , Xn denote a random sample from a population with continuous cdf FX . Here,
there exists a unique ordered arrangement within the sample. Suppose, X(1) denotes the samallest of
X1, X2, . . . , Xn; X(2) denotes the second smallest ; ... and X(n) denotes the largest. Then,

X(1) < X(2) < ... < X(r) < ... < X(n), where 2 < r < n

denotes the original random sample after arrangement in increasing order of magnitude, and these
are collectively termed the ordered statistics of the random sample X1, X2, . . . , Xn . The rth smallest
, 1 ≤ r ≤ n , X(r) is called the rth order statistic.

• Sample median :

{
X[n+1

2
] , for n odd

Any number between X(n
2
) and X(n

2
+1) , for n even

• Sample midrange :
(X(1) +X(n))

2

• Sample Range : X(n) −X(1)

I Quantile function : (κp or QX(p) or Xp)

A quantile of a distribution is that value of X such that a specific percentage of the probability is
at or below it. Thus a quantile divides the area under the pdf into two parts of specific amounts. Only
the area to the left of the number need to be specified since the entire area is equal to 1.

The pth quantile (or the 100pth percentile) is that value of the random varible X, say Xp, such
that 100p% of the values of X in the population are less than or equal to Xp , for any positive fraction
p (0 < p < 1)

.i.e. P (X ≤ Xp) = p

∴ FX(Xp) = p

Moreover, if FX is strictly increasing, the pth quantile is the unique solution to the equation :

Xp = F−1
X (p) = QX(p) say,

for a given p and the inverse of the cdf QX(p), 0 < p < 1, is called the quantile function of the
random variable X.

Thus the pth quantile is the solution to the equation FX(x) = p. Since the cdf may not be increasing
for all values, we define pth quantile QX(p) as the smallest value at which the cdf is atleast equal to p,
or,

QX(p) = F−1
X (p) = inf{x : FX(x) ≥ p}, 0 < p < 1

This definition gives a unique value for the quantile QX(p) even when FX is flat or is step function.
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I CDF of X(r):

P (X(r) ≤ t) =
n∑
i=r

(
n

i

)
[FX(t)]

i[1− Fx(t)]n−i, −∞ < t <∞

I pdf of X(r) :

fX(r)
(x) =

n!

(r − 1)!(n− r)!
[FX(x)]

r−1[1− Fx(x)]n−rfX(x), −∞ < x <∞

• For a random sample of size n from theU(0, 1) the rth order statisticX(r) follows a beta(r, n− r + 1)
distribution.

• For U(0, 1) distribution,

P (X(r) ≤ t) =
n∑
i=r

(
n

i

)
ti(1− t)n−i

=
1

B(r, n− r + 1)

tˆ

0

xr−1(1− x)n−rdx

︸ ︷︷ ︸
= It(r, n− r + 1)

• One key reason why the order statistics are so important in nonparametric statistics is that for
any order statisticX(r) from a continuous cdf F , the transformed random variable Ur = F (X(r))
has the same distribution as that of the rth ordered statistic from the U(0, 1), regardless of the
shape of F as long as it is continuous; in this sense F (X(r)) may be viewed as distribution free.

This property of continuous ordered statistics is called the probability-integral transformation
(PIT).

I Confidence interval for a population quantile :

FX(κp) = p . . . . . . . . . (1) ;κ0.50 = The median of the distribution

⇒κp = QX(p) = F−1
X (p)

Assumption : Unique solution to the equation (1).
A natural point estimate of κp is the pth sample quantile, which is the (np)th order statistic,

provided of course np is an integer.
We define the order statistic X(r) to be the pth sample quantile where r is defined by,

r =

{
np if np is an integer

[np+ 1] if np is not an integer

∴ X(r)︸︷︷︸
pth sample
quantile

=

{
X(np) if np is an integer

X([np+1]) if np is not an integer
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A logical choice for the CI endpoints are the two order statistics, say X(r) and X(s), r < s , from
the random sample drawn from the population FX .

To find the 100(1− α)% CI, we must then find the two integers r and s, 1 ≤ r ≤ s ≤ n, such
that ,

P (X(r) < κp < X(s)) = 1− αfor some given number 0 < α < 1

Alternative notation for 1− α : “γ” → Confidence level or Confidence co-efficient.

The event {X(r) < κp} happens iff either {X(r) < κp < X(s)} or {X(s) < κp}, and these later
two events are clearly mutually exclusive.

∴ ∀r < s, P (X(r) < κp) = P (X(r) < κp < X(s)) + P (X(s) < κp)

Equivalently,

P (X(r) < κp < X(s)) = P (X(r) < κp)− P (X(s) < κp) . . . . . . . . . (2)

∴ FX is strictly increasing function, X(r) < κp iff FX(X(r)) < FX(κp) = p.
But when FX is continuous, the PIT implies that the probability distribution of the random variable

X, i.e. FX(X(r)) is the same as that of U(r) , the rth order statistic from the uniform distribution over
the interval (0, 1).

P [X(r) < κp] = P [FX(X(r)) < FX(κp)]

= P [FX(X(r)) < p] [∵ FX(κp) = κp]

= P [U(r) < p]

=

pˆ

0

n!

(r − 1)!(n− r)!
xr−1(1− x)n−rdx

=

pˆ

0

n

(
n− 1

r − 1

)
xr−1(1− x)n−rdx . . . . . . . . . . . . (3)

Clearly, this probability does not depend on FX . A confidence interval based on (2) is therefore
distribution free.

In order to find the interval estimate of κp, we substitute (3) into (2) and find r and s such that,

P (X(r) < κp < X(s)) =

pˆ

0

n

(
n− 1

r − 1

)
xr−1(1− x)n−rdx−

pˆ

0

n

(
n− 1

s− 1

)
xs−1(1− x)n−sdx

= 1− α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

Clearly, this equation will not give a unique solution for the two unknowns, r and s, and the
additional conditions are needed.

For the nearest possible interval for a fixed confidence co-efficient, r and s would be chosen such
that (iv) is satisfied and X(s) −X(r), or E(X(s) −X(r)), is as small as possible. Alternatively, we
could minimize s− r.
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Applying integration by parts, leads to,

P (X(r) < κp) =

n−r∑
j=0

(
n

r + j

)
pr+j(1− p)n−r−j

or after substituting r + j = i,

P (X(r) < κp) =
n∑
i=r

(
n

i

)
pi(1− p)n−i

∴ P (X(r) < κp < X(s)) =
n∑
i=r

(
n

i

)
pi(1− p)n−i−

n∑
i=s

(
n

i

)
pi(1− p)n−i

=

s−1∑
i=r

(
n

i

)
pi(1− p)n−i

= P (r ≤ K ≤ s− 1)

where K ∼ Bin(n, p) . . . . . . . . . . . . . . . (5)

Choose r and s, such that (s− r) is minimum for fixed α.
Discreteness issue arises here too.
So, choose r and s such that,

P (X(r) < κp < X(s)) = P (r ≤ K ≤ s− 1)

≥ 1− α

I Alternative way (simple way) :
The event {X(r) < κp} occurs iff at least r of the n sample values, X1, ..., Xn are less than κp.

Thus,

P [X(r) < κp] = P [exactly r of the n observations < κp]

+P [exactly (r + 1) of the n observations < κp]

...
+P [exactly n of the n observations < κp]

P [X(r) < κp] =
n∑
i=r

P [exactly i of the n observations < κp]

The probability that exactly i of the n observations are less than κp can be found as the probability
of i successes in n independent Bernoulli trials, since the sample observations are all independent and
each observation can be classified as either a success or a failure, where a success is defined as an
observation less than κp.

In other words,

P [exactly i of the n sample values < κp]

=

(
n

i

)
pi(1− p)n−i
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∴ P (X(r) < κp) =
n∑
i=r

(
n

i

)
pi(1− p)n−i

I Summary :
The 100(1− α)% CI for the pth quantile is given by (X(r), X(s)), where r and s are integars such

that 1 ≤ r ≤ s ≤ n and

P (X(r) < κp < X(s)) =

s−1∑
i=r

(
n

i

)
pi(1− p)n−i

≥ 1− α . . . . . . . . . . . . . . . (6)

Choose r and s such that (s− r)is minimum.

One common approach : Assign the probability α
2
in each tail. This yields the so called “equal

tails” interval, where r and s are the largest and least integers 1 ≤ r ≤ s ≤ n such that,

r∑
i=1

(
n

i

)
pi(1− p)n−i ≤ α

2

&

s−1∑
i=0

(
n

i

)
pi(1− p)n−i ≥ 1− α

2

}
. . . . . . . . . (7)

Remarks :

1. In some cases there may be no r − 1, r ≥ 1 that satisfies 1st inequality of (7). In this case
we take X(r) = −∞. This means that for the given n, p, α, we obtain a one sided (upper) CI

(−∞, X(s)) with exact confidence level
s−1∑
i=0

(
n

i

)
pi(1− p)n−i and we may want to choose s such

that this level is atleast 1− α, rather than 1− α
2
.

2. Similarly, there may be no s− 1 ≤ n, which satisfies the 2nd inequality of (7) and in that
case we take the right hand CI end point X(s) =∞, so that we obtain a one sided (lower) CI

(X(r),∞) with exact confidence level 1−
r−1∑
i=0

(
n

i

)
pi(1− p)n−i ≥ 1− α.
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D. Test For Randomness

Introduction :

Run: Given an ordered sequence of one or more types of symbols, a run is defined to be a succession of
one or more types of symbols which are followed and preceded by a different symbol or no symbol
at all.

Suppose we have an ordered sequence of two types of symbols, T1 and T2. We may want to know whether
the symbols are occurring randomly or following some pattern. The number of runs in a sequence may
give clue of lack of randomness.

Let, total number of runs of 1st type of symbol (T1) = R1,
Total number of runs of 2nd type of symbol (T2) = R2,
Total number of runs R = R1 +R2

Then the total number of runs can be used to test for randomness

I Hypothesis :

Here our null hypothesis is H0 :The arrangement is random against the alternative, H1 : The null
hypothesis is not true.

In this case both too few runs and both too many runs suggest lack of randomness.

• Too few runs suggests that symbols are clustered in the arrangements and they are following some
trend

• Again too many runs suggests that the symbols are positioned pairwise in arrangement and they
are following some kind of cyclic pattern

I Test based on the total number of runs :

Assume an ordered sequence of n elements with n1 elements of 1st type of symbol T1 and n2 elements
of 2nd type of symbol T2. Let there are r1 runs of T1 and r2 runs of T2. Then the total number of
runs r = r1 + r2. In order to derive a test of randomness based on variable R we need to find the null
distribution of R i.e., the distribution of R under the null hypothesis.

I Exact null distribution of R:

The distribution of R will be found by first determining the joint probability distribution of R1 and R2

and then the distribution of their sum. Since under the null hypothesis every arrangement of the n1 +n2

objects is equiprobable, the probability that R1 = r1 and R2 = r2 is the number of distinguishable

arrangements, which is
n!

n1!n2!
. For the numerator quantity, the following counting lemma can be used.

The number of distinguishable ways of distributing n-like objects into r distinguishable cells with no
cell empty is

(
n−1
r−1
)
, n > r.

All possible cases :

1. r1 = r2 and c = 2

2. r1 = r2 + 1 and c = 1
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3. r1 = r2 − 1 and c = 1

Therefore the joint probability distribution of R1 and R2 is

fR1,R2(r1, r2) =
c
(
n1−1
r1−1

) (
n2−1
r2−1

)(
n1+n2

n

) r1 = 1, 2, ..., n1; r2 = 1, 2, ..., n2 —(1)

The marginal probability distribution of R1 and R2 is,

fR1(r1) =

(
n1−1
r1−1

)(
n2−1
r2−1

)(
n1+n2

n

) r1 = 1, 2, ..., n1

fR2(r2) =

(
n2−1
r2−1

)(
n2−1
r2−1

)(
n1+n2

n

) r2 = 1, 2, ..., n2

The probability distribution of R is

fR(r) =


2

(
n1−1

r/2−1

)(
n2−1

r/2−1

)
(n1+n2n )

,when r is even(
n1−1

(r−1)/2

)(
n2−1

(r−3)/2

)
+
(
n2−1

(r−3)/2

)(
n1−1

(r−1)/2

)
(n1+n2n1

)
,when r is odd

because r is even implies r1 = r2 = r/2 and (1) is summed over this pair. If r1 = r2 + 1 or
r1 = r2 − 1,r is odd. In this case (1) is summed over the two pairs of values r1 = (r − 1)/2 and
r2 = (r + 1)/2, r1 = (r + 1)/2 and r2 = (r − 1)/2, obtaining the given result.

Alternative Way :

Case 1: r = 2k + 1

• If the sample starts with the symbol T1and ends with the symbol T1, then we get the case r1 = r2+1
i.e. r2 = k and r1 = k + 1

• If the sample starts with the symbol T2and ends with the symbol T2, we get the case r1 = r2 − 1
i.e r1 = k and r2 = k + 1.

For the first case total number of arrangements is
(
n1 − 1
k

)(
n2 − 1
k − 1

)
and in the second case to-

tal number of arrangements is
(
n2 − 1
k

)(
n1 − 1
k − 1

)
. So total number of possible arrangements is(

n1 − 1
k

)(
n2 − 1
k − 1

)
+

(
n2 − 1
k

)(
n1 − 1
k − 1

)
.

Hence, P (R = r) =

(
n1 − 1
k

)(
n2 − 1
k − 1

)
+

(
n2 − 1
k

)(
n1 − 1
k − 1

)
(
n1 + n2

n1

) , when r = 2k + 1

Case 2: r = 2k
If the sample starts with the symbol T1 and end with the sybol T2or vice-versa, we get the above

case. i.e r1 = r2 = k

So total number of arrangements is 2

((
n1 − 1
k − 1

)(
n2 − 1
k − 1

))
.
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Hence, P (R = r) =

2

 n1 − 1
k − 1

 n2 − 1
k − 1


 n1 + n2

n1

 , when r = 2k

Hence the probability distribution of R is -

fR(r) =



2

 n1 − 1
r/2− 1


 n1 − 1

r/2− 1


 n1 + n2

n1


when r is even

 n1 − 1
(r−1)/2


 n2 − 1

(r−3)/2

+

 n2 − 1
(r−3)/2


 n1 − 1

(r−1)/2


 n1 + n2

n1


when r is odd

I Rejection criteria :

• H1 : The symbols are following some “trend” pattern

Reject H0 if there exists a c1 such that
P (R 6 c1) 6 α

• H1: The symbols are following some “cyclical” pattern

Reject H0 if there exists a c2 such that
P (R > c2) 6 α

• H1 : The arrangement is non random

Reject H0 if there exists a c1 and c2 such that
P (R 6 c1) + P (R > c2) 6 α

I Importance :

Test for randomness is a very important addition to the statistical theory. Because most of the statistical
analysis is started with the assumption of having a random sample. If the assumption is valid then every
sequential order is of no consequence. However if the randomness is suspected then the information about
order, which is almost always available, can be used to test a hypothesis of randomness. This type of
testing is helpful in time series and quality control analysis.

I Remark :

The run test is applicable in both qualitative and quantitative data. In the latter case, the values are
compared with a focal point, often the mean or median and notingwhether they exceedor is exceeded
by this value. If any observation is equal to the focal point then it is ignored in analysis and n1,n2 and
n are reduced accordingly.
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E. Kolmogorov-Smirnov

Tests of Goodness of Fit :

In classical statistics, information about the form generally must be postulated in the null hypothesis
to perform an exact parametric type of inference. For example, suppose we have a small number of
observations from an unknown population with unknown variance and the hypothesis of interest concerns
the value of the population mean. The traditional parametric test„ based on Student’s t-distribution,is
derived under the assumption of a normal population. Therefore, it muist be desirable to check on the
reasonableness of the normality assumption before forming any conclusions based on t-distribution.

• How do we check ?

Ans : Goodness of Fit tests.

I Types of Goodness of fit tests :

The first type is designed for null hypothesis concerning a discrete distribution and compares the
observed frequencies with the frequencies expected under the null hypothesis. This is the chi-
square test provided by Karl Pearson.

Thew second type of goodness of fit test is designed for null hypothesis concerning a continuous
distribution and compares the observed cumulative relative frequencies with those of expected
under the null hypothesis. This group includes-

1. Kolmogorov-Smirnov (K-S) Test

2. Lilliefors Test

3. Anderson-Darling (A-D) Test

Remark : One may use graphical approaches too.

� The Kolmogorov-Smirnov (K-S) One Sample Statistic :

(Recall: Emperical Distribution Function)
For a random sample from theb distribution with cdf FX(x), the emperical distribution function or

edf, denoted by Sn(x), is imply the proportion of sample values less than or equal to the specified value
of x, that is -

Sn(x) =
no. of sample values ≤ x

n

In terms of order statistics,

Sn(x) =


0 if x < x(1)
i
n

if X(i) ≤ x ≤ x(i+1), i = 1, 2, . . . , n− 1

1 if x ≥ x(n)

In case of tied observations, the edf is still a step function but it jumps only at the distinct observed

sample values X(j) and the height of the jump is equal to
k

n
, where k is number of values tied at X(j).
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I Statistical Properties of Sn(x) :

Let Tn(x) = n.Sn(x)

Result-1 :- For any fixed real value of x, the random variable Tn(x) ∼ Bin(n, FX(x)) .

∴ E(Sn(x)) = FX(x)

& V ar(Sn(x)) =
FX(x)(1− FX(x))

n

For any fixed real value of x, Sn(x) is a consistent estimator of FX(x), or, in other words, Sn(x)
P−→

FX(x).

E(Tn(x)Tn(y)) = n.FX(x) + n(n− 1)FX(x)FY (y)for x < y

� Glivenko-Cantelli Theorem :

Sn(· ) converges uniformly to FX(· ) with probability 1, that is

Pr
{

lim
n→∞

sup
[
|Sn(x)− FX(x)|

]}
= 1

As n→∞, the limiting distribution of the standardized Sn(x) is standard normal or

lim
n→∞

Pr

{ √
n[Sn(x)− FX(x)√
FX(x)(1− FX(x))

≤ t

}
= Φ(t)

Lets come back to KS one sample statistic.

Assumption : X1, X2, ..., Xn be a sample from a population that is continuous. Let F (.) be the
corresponding cdf.

Target : To test the hypothesis that the sample comes from a specified cdf F0 against the alternative
that it is from some other cdf F1 where F1(x) 6= F0(x) for some x ∈ R

• How to deal with the problem ?

Comparison can be made between observed and expected cumulative relative frequencies for each of
the observed values. Several goodness of fit test statistics are function of the derivation between the
edf and population cdf specified under the null hypothesis. The function of these deviations used
to perform a goodness of fit test might be the sum of a square or absolute values, or the maximum
deviations, to name only a few. The best known test is the K-S one sample statistic.

I Test Statistic :

According to Glivenko-Cantelli theorem as n→∞, SN(x) approaches the cdf Fθ(x) for all x. Therefore
for large n the deviations between the true function and its statistical image, |SN(x)−F0(x)| should be
small for all values of x.This suggests that if H0 is true the statistic

Dn = |Sn(x)− F0(x)| is for any x seasonable measure of our estimate.
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This Dn statistic, called the K-S one sample statistic, is particularly useful in nonparametric sta-
tistical inference because the probability distribution of Dn does not depend on Fθ(x) as long as F0 is
continous.

Therefore Dn is a distribution free statistics.
D+
n = sup

x
(Sn(x)− F0(x)) & D−n = sup

x
(F0(x)− Sn(x)) are called the one sided K-S statistics.

Result : The statistics Dn, D+
n , D−n are completely distribution-free for any specified

continuous cdf Fθ.

Proof :
Defining X(0) = −∞ and X(n+1) = ∞ , we can write Sn(x) = i

n
for X(i) ≤ x < X(i+1) for i =

0, 1, 2, ..., n.

D+
n = sup

x
[Sn(x)− F0(x)]

= max
0≤i≤n

sup
X(i)≤x<X(i+1)

[Sn(x)− F0(x)]

= max
0≤i≤n

sup
X(i)≤x<X(i+1)

[
i

n
− F0(x)

]
= max

0≤i≤n
[
i

n
− inf

X(i)≤x<X(i+1)

F0(x)]

= max
0≤i≤n

[
i

n
− F0(X(i))

]
= max( max

0≤i≤n

[
i

n
− F0(X(i))

]
, 0)

Now, Dn = sup
x
|Sn(x)− F0(x)| = max

x
(D+

n , D
−
n )

Similarly, we can show that,

D−n = max(max
1≤i≤n

[F0(X(i))−
i− 1

n
], 0)

.
Also, we know that,

Dn = max
x

(D+
n , D

−
n )

= max

{
max
1≤i≤n

[
i

n
− F0(X(i))

]
, max
1≤i≤n

[
F0(X(i))−

i− 1

n

]
, 0

}
Observe the probability distribution ofDn,D+

n andD−n depend only on the random variables F0(X(i)),
i = 1, 2, ..., n under H0, these are order statistics from U(0, 1), regardless of the original F0 as long as it
is continuous and completely specified.

Thus Dn, D+
n and D−n have distributions which are independent of the particular F0.

Result :
For Dn = sup

x
|Sn(x)− F0(x)|, where F0(x) is only specific continuous cdf, we have under H0,
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P (Dn <
1

2n
+ ν) =



0 for ν ≤ 0
1
2n

+νˆ
1
2n
−ν

1
3n

+νˆ
1
3n
−ν

. . .

2n−1
2n

+νˆ
2n−1
2n
−ν

f(u1, u2, ..., un)du1...dun for 0 < ν < 2n−1
2n

1 for ν ≥ 2n−1
2n

where f(u1, u2, ..., un) =

{
n! o < u1 < u2 < . . . < un < 1

o otherwise

• Numerical values of Dn,α are given for n ≤ 40 and selected tail probabilities α.

• For larger sample sizes, Kolmogorov (1933) observed the following convenient approximation to
the sample data of Dn.

“If FX is any continuous df, then for any d > 0 ,

lim
n→∞

P

{
Dn ≤

d√
n

}
= L(d)

where ,

L(d) = 1− 2
∞∑
i=1

(−1)i−1e−2i
2d2

”

Result :

PH0(D
+
n < c) =



0 for c ≤ 0
1ˆ

1−c

unˆ
n−1
n
−c

. . .

u2ˆ
1
n
−c

f(u1, u2, ..., un)du1...dun for 0 < c < 1

1 for c ≥ 1

where f(u1, u2, ..., un) =

{
n! o < u1 < u2 < . . . < un < 1

o otherwise

• D+
n and D−n have identical distributions because of symmetry.

• For large n, ∀d ≥ 0, lim
n→∞

P
{
Dn ≤ d√

n

}
= 1− e−2d2

• If F0 is any specified continuous cdf, then for every d ≥ 0 , the limiting null distribution of
V = 4nD+2

n , as n→∞, is the χ2
(2).

� Applications of the K-S one sample statistics :

Assume that we have the random sample X1, X2, ..., Xn and the hypothesis,
H0 : FX(x) = F0(x) ∀x where F0(x) is completely specified continuous cdf .
The differences between Sn(x) & F0(x) should be small for all x except for sampling variation , if

H0is true.
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For H1 : FX(x) 6= F0(x) for some x , large absolute values of thet deviations tend to discredit the H0

Therefore ,the K-S goodness - of - fit test with significance level α is to reject H0when Dn > Dn1α

The following expression is considerably easier for algebra calculations & applies when ties are present
:

Dx = sup
x
|Sn(x)− F0(x)|

= sup
x

[|Sn(x)− F0(x)|, |Sn(x− ε)− F0(x)|]

,where ε denotes any small positive number.

I One - Sided Tests :

Spse H1 : FX(x) ≥ F0(x) ∀x
the appropriate rejection-region is D+

n > D+
n1α

Suppose H1 : Fα(x) ≤ F0(x), ∀x , H0is rejected when D−n > D−n,α

• Most test of the goodness of fit are two-sided.

• The tail probabilities for the the one-sided statistic are approx. one-half of the corresponding tail
proabilities for the two sided statistic.

I Confidence Bounds :

Recall ,

Pr{Dn > Dn,α} = α

⇔Pr{Dn < Dn,α} = 1− α
⇔Pr{Sup

x
|Sn(x)− FX(x)| < Dn,α} = 1− α

⇔Pr{Sn(x)−Dn,α < FX(x) < Sn(x) +Dn,α,∀x} = 1− α

Thus we define

Ln(x) = max(Sn(x)−Dn1α, 0)

& Un(x) = min(Sn(x) +Dn1α, 1)

as lower & upper confidence bounds assosiated with confidence coefficient 1− α.

� Determination of sample Size :

The statistics Dnenables us to determine the minimum sample size required to garuntee with a certain
probabilty 1− α, that the error in the estimate never exceeds a fixed value c

i.e., We want to find the minimum value of n that satisfies

Pr{Dn < c} = 1− α
⇔1− Pr{Dn < c} = Pr{Dn > c} = α
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∴ c equals Dn,α
′n′ can read directly from tables as that sample sixe corresponding to Dn,α = c

E.g. Spse error should be less 0.25 with probabaility 0.98, we look down the 0.02 = 1− 0.98 column
of tbales until we find the largest c ≤ 0.25 . This entry is 0.247 which corresponds to n = 36.

SOURCE: Gibbons & Chakrabarti
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F. The Wald-Wolfowitz Runs

I Some Two Sample Problems :

So far we observed problem related to either single set of observations or two dependent samples.
Therefore, all these problems can be legitimately classified as one sample problems.

From here onwards, we will be concerned with the data consisting of two mutually independent
random samples, that is, random samples drawn independently from each of two populations. Not
only are the elements within each sample independent, but also every element in the first sample is
independent of every element in the second sample.

Assumptions :

1. The observations X1, X2, . . . , Xm are a random sample from population 1 with C.D.F. FX . The
observations Y1, Y2, . . . , Yn are a random sample from population 2 with C.D.F. FY .

2. The X’s and Y ’s are mutually independent.

3. Populations 1 and 2 are continuous populations.

Target :
To test whether the two samples are drawn from identical populations,

i.e. H0 : FX(x) = FY (x)∀x ∈ R

[Recall t-test for equality of means]

Tests of H0 depend on the type of alternative specified.

Some of the alternatives :

1. Location alternative : FY (x) = FX(x− θ), θ 6= 0 i.e. Y D
= X + θ, θ 6= 0.

2. Scale alternative : FY (x) = FX(xθ), θ 6= 1 i.e. Y D
=
X

θ
, θ 6= 1.

3. Lehmann alternative : FY (x) = 1−
(
1− FX(x)

)θ+1
, θ + 1 > 0.

4. Stochastic alternative : FY (x) ≥ FX(x), ∀x and FY (x) > FX(x), for atleast one x.

5. General alternative : FY (x) 6= FX(x), for some x.
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Alternatives 1. and 2. show differences in FX and FY in location and scale respectively.

Alternative 3. states that Pr{Y > x} =
[
Pr{X > x}

]θ+1. In the special case when θ is an integer,
it states that Y has the same distribution as the smallest of the θ + 1 of X-variables.

i.e.Y
d
= X1:θ+1

A similar alternative to test that is sometimes used is FY (x) =
(
FX(x)

)α for some α > 0 and for all x.
When α is an integer, this states that Y is distributed as the largest of α X-variables.

i.e.Y
d
= Xα:α

Alternative 4. refers to the relative magnitudes of X’s and Y ’s. It states that

Pr{Y ≤ x} ≥ Pr{X ≤ x}
So that, Pr{Y > x} < Pr{X > x}

In other words, X’s tend to be larger than Y ’s.

Under H0,the two random sample can be considered a single random sample of size N = m+n drawn
from the common, continuous, but unspecified population. Then the combined ordered configuration of
themX and n Y random variables in the sample is one of the

(
m+n
m

)
possible equally likely arrangements.

Eg. m = 3 , n = 2
Under H0,each of the

(
m+n
m

)
possible equally likely arrangements.

Eg. m = 3, n = 2
Under H0, each of the

(
5
2

)
= 10 possible arrangements of the combined single shown below is equally

likely.

1. XXXY Y 2. XXY XY 3. Y XY XY
4. XXY Y X 5. XY XXY 6. XY XY X
7. Y XXXY 8. Y XXYX 9. XY Y XX
10. Y Y XXX

Remark : The sample pattern of arrangement of X’s & Y ’s provides information about the type
of the difference which may exist in the populations.

Many statistical tests are based on same function of this combined arrangement. The type of function
which is most appropriate depends on the the type of the difference one hopes to detect, which is indicated
by the alternative hypothesis.

(recall the type of alterations discussed)

Definition : X ≥st Y
We may say that a continuous random variable X is stochastically larger than a continuous random

variable Y if

P (Y ≤ x) ≥ P (X ≤ x) ∀x
and P (Y ≤ x) > P (X ≤ x) for at least one x ∈ R
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X is Stochastically Larger than Y

Support of X & Y

pd
f o

f X
 &

 Y
,  

i.e
. f

(x
) 

&
 f(

y)

t

PDF of Y PDF of X

X ≥st Y

Recall location alternative,

HA : FY (x) = FX(x− θ) ∀x ∈ R & some θ 6= 0

⇒Y d
= X + θ

So that, Y ≥st X (or Y ≤st X) iff θ > 0 (θ < 0)

Recall scale alternative,

HA : FY (x) = FX(θx) ∀x ∈ R & some θ 6= 1

⇒Y d
=
X

θ
So that, Y ≥st X (or Y ≤st X) iff θ < 1 (θ > 1)

Recall,
HA : FY (x) = (FX(x))α, for some positive integer α & ∀x.
This is called Lehman alternative.
Hence, Y d

= Xα

Under this alternative, Y ≥
st
X(wY ≤

st
X) iff k > 1(k < 1)
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I The Wald-Wolfowitz Runs Test :

Combine the two sets of random samples X1, X2, ..., Xm and Y1, Y2, ..., Yn into a single ordered sequence
from smallest to largest, keeping track of which observations correspond to the X sample and which to
the Y .

Assuming that their probability distribution are continuous, a unique ordering is always possible,
since theoretically ties do not exist.

Eg: For m = 4, n = 5, a typical arrangement might be XXYXY Y XY Y
Under H0 of identical distributions.
H0 : FY (x) = FX(x)∀x we expect the X and Y random variables to be well mixed in the ordered

configuration, since the m+ n = N random variables constitute a single random sample of size N from
the population.

(Recall the definition of “run”.
A run is a squence of identical letters proceeded and followed by a different letter or no letter.)
Point to note : The total number of runs in the ordered pooled sample is an indication of the degree

of mixing.
A pattern of arrangement with too few runs would suggest that this group of N is not a single

random sample but instead is composed of two samples from two distinguishable populations.
Eg:

1. XXXXY Y Y Y Y . Here R = 2. May be Y ≥st X

2. Y Y Y Y Y XXXX. Here R = 2. May be Y ≤st X

Remark : Test criterion based solely on the total number of runs cannot distinguish this above two
cases.

The runs test is appropriate primarily when the alternative is completely general and two-sided as
in

HA : FY (x) 6= FX(x) for some x
Define R := The total no. of runs in the combined arrangement of mX and nY random variables.

I Rejection criteria :

Since too many few runs tend to discredit the H0 when the alternative is HA, the Wald-Wolfowitz(1940)
runs test for significance level α generally has the rejection region in the lower tail as

R ≤ cα

where cα is chosen to be the largest integar satisfying PH0(R ≤ cα) ≤ α.
The p value for the runs test is then given by Pr{R ≤ R0} , where R0 is the observed value of the

runs test statsitic R.

Remark:
1. Under H0, the probability distribution of R is exactly the same as we found for the runs test for

randomness.
2. The other properties of R including the moemnts & assymptotic null distribution are also un-

changed.
3. The only difference here is that the assymptotic critical region for the alternative of different

population is too few runs.
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I The problem of ties :

Ties do not present a problem in counting the number of runs unless the tie is across the samples; that
is , two or more observations from different samples have exactly the same magnitude.

We can break all the ties in all possible ways & compute the total no. of runs for each resolution
of all ties . The values of the test statistic R is the largest computed value , since that is the one least
likely to lead to rejection of H0.

For each groups of ties across samples , where there are s x’s and y’s of equal magnitude for some
s ≥ 1, t ≥ 1 , there are

(
s+t
s

)
ways to break the ties. Thus ,if there are k groups of ties, the total no. of

values of R to be computed is the product
∏k

i=1

(
si+ti
si

)
.
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G. The Kolmogorov-Smirnov (K-S) Two Sample Test

Here the compsrison is made between the emperical distribution functions of the two samples.

Data :
Two independent random samples of size n from continuous populations with CdFs FX and FY

respectively.

X1, X2, X3, . . . , Xm

Y1, Y2, Y3, . . . , Yn

The respective emperical distribution function, denoted by Sm(x) and Sn(x) are defined as before :

Sm(x) =


0 if x < X(1)

k

m
if X(k) ≤ x < X(k+1)

1 if x ≥ X(m)

for k = 1, 2, . . . ,m− 1

& Sn(x) =


0 if x < Y(1)
k

n
if Y(k) ≤ x < Y(k+1)

1 if x ≥ Y(n)

for k = 1, 2, . . . , n− 1

In the combined ordered arrangement of the m + n sample observations, Sm(x) and Sn(x) are the
respective proportions of X and Y observations which do not exceed the specified value of x.

Here, H0 : FY (x) = FX(x) ∀x
If H0 is true the population distributions are identical and wee have two samples from the same

population.
The empirical distribution function for X and Y sample are reasonable estimates of their respective

population CDFs. Therefore, allowing for sampling variation, there should be reasonable agreement
between the two empirical distributions if H0 is true; otherwise the data suggests that H0 is not true &
therefore should be rejected.

• Q. How dose do the two empirical cdf’s have to be so that they could be viewed as not
significantly different, taking account of the sampling versatility ?

The two sided K-S two sample test criterion, denoted by Dm,n, is based on the absolute difference
between the two empirical distributions.

Dm,n = max
x
|Sm(x)− Sn(x)|

[
As {|Sn(x)− Sm(x)| : x ∈ R} is a finite set
we can take maximum instead of supremum

]
Since have only;y the magnitude, & not the direction, of the deviations are considered, Dm,n is

appropriate for a general two-sided alternative.
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HA : FY (x) 6= FX(x) for some x

• Rejection criteria : Reject H0 at level of significance α if Dm,n ≥ cα, where cα is chosen such
that PH0(Dm,n ≥ cα) ≤ α

• p-value : PH0(Dm,n ≥ D0) , where D0 is the observed value of the two sample KS statistic

I A method to compute PrH0(Dm,n ≥ d) ( where d is the observed value of K-S Statistic
) :

Arrange the combined sample of m+ n observations in increasing order of magnitude.
The arrangement can be depicted graphically on a Cartesian coordinate system by path which starts

at the origin & moves one step to the right for an x observation and one step upward for an y observation,
ending at (m,n).

E.g. Let the sample arrangement be-
xyyxxyy

The observed values of mSm(x) and nSn(x) are respectively, the coordinates of all parts (u, v) on
the path where u and v are integers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Path of (u,v)

Here m=3, n=4
X

Y

(0,0)
(1,0)

(1,1)

(1,2)
(2,2) Q(3,2)

(3,3)

(m=3,n=4)
INDEX

nx−my=0 i.e.
4x−3y=0
Increment in Y

Increment in X
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The number d is the largest of the differences | u
m
− v

n
| = |nu−mv|

mn
.

The equation of the line joining the points (0, 0) and (m,n) is nx−my = 0.
The vertical difference from any point (u, v) on the path to this line is |v − nu

m
|.

Therefore, ndφ for the observed sample is the distance from thev diagonal line. The furthest point
is labeled as Q , and the value of d is 2

4
. i.e., nd = 2 at Q.

The total number of arrangements of mX and nY random variables is
(
m+n
n

)
, and under H0each of

the corresponding paths is equally likely.

PH0(Dm,n ≥ d) =

No. of paths which have points at a distance
of not less than nd from the diagonal line(

m+n
n

)
• Q. How do we count this number?

Ans : We draw another figure of the same dimension as before and make off two lines at vertical
distance and for the diagonal.

0 1 2 3 4

0
1

2
3

4
5

Evaluation of A(u,v) for 'xyyxxyy'

Here m=3, n=4
X

Y

0 1 2 3 4

0
1

2
3

4
5

Evaluation of A(u,v) for 'xyyxxyy'

Here m=3, n=4
X

Y

A(1,1)=2 A(2,1)=2

A(1,2)=2 A(2,2)=4

A(1,3)=2 A(2,3)=6 A(3,3)=6

A(2,4)=6 A(3,4)=12

A(m,n) i.e.
A(3,4)=12

Denote by A(m,n) the number of paths from (0, 0) to (m,n) which lie entirely within (not on) these
boundary lines. Then the desired probability is -

PH0(Dm,n ≥ d) = 1− PH0(Dm,n < d)

= 1− A(m,n)(
m+n
n

)
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The no. A(u, v) at any intersection (u, v) clearly satisfies the recursion relation

A(u, v) = A(u− 1, v) + A(u, v − 1)

with boundary conditions,

A(0, v) = A(u, 0) = 1

Thus, A(u, v) is the sum of the numbers at the intersections where the previous point on the path
could have been whie still in within boundaries.

Since here A(3, 4) = 12, we have

Pr{D3,4 ≥ 0.5} = 1− 12(
7
4

) = 0.65714

As m,n→∞ in such a way that m
n
remains constant, Smirnov (1939) proved the result-

lim
m,n→∞

Pr

(√
mn

m+ n
Dm,n ≤ d

)
= L(d)

where, L(d) = 1− 2
∞∑
i=1

(−1)i−1e−2i
2d2

I One sided alternative :

D+
m,n = max

x
(Sm(x)− Sn(x))

One may use this statistic to test

H0 :FY (x) = FX(x) ∀x ∈ R
V s. H1 :FY (x) ≤ FX(x) ∀x ∈ R

FY (x) < Fx(x) for some x

• Rejection Criteria : D+
m,n ≥ cα

Remarks :

1. The one sided test based on D+
m,n is also distribution free.

2. The grgaphic method described for Dm,n can be applied here to calculate PrH0{D+
m,n ≥ d}. The

point Q+, corresponding to Q , would be the point farthest below the diagonal line , and A(m,n)
is the no. of points lying entirely above the lower boundary line.

3. lim
m,n→∞

Pr(
√

mn
m+n

D+
m,n ≤ d) = 1− e−2d2

I Ties:

Ties within and across samples can be handled by considering only the r distinct ordered observations
in the combined sample as values of x in computing Sm(x) and Sm(x) for r ≤ m & r ≤ n . Then w
efind the empirical cdf for each different x and their difference at these observations and calculate the
statistic in the usual way.
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H. Median Test

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be independent samples from two absolutely continuous dis-
tribution function FX(·) and FY (·) respectively.

I Target :

To test H0 : FX(x) = FY (x) ∀x ∈ R or, MY = MX against H1A/H2A/H3A where,

where,H1A : X ≥st Y or MX > MY

H2A : Y ≥st X or MY > MX

H3A : FX(x) 6= FY (x) for some x ∈ R or MY 6= MX

whereMX andMY are respective medians of the populations from where the samples X1, X2, . . . , Xm

and Y1, Y2, . . . , Yn are drawn from.

I Method :

First, we form combined ordered sample of X1, X2, . . . , Xm and Y1, Y2, . . . , Yn. Let “δ” be the median of
combined sample.

If m+ n is odd, the median is the (m+n+1
2

)th value in the ordered arrangement.
If m+ n is even, the median is any number between the two middle values.
Let V be the number of observed values of X that are less than ”δ”.

• Q. What dose large value of V indicates?

Ans : It indicates that the actual median of X is smaller than the median of Y . One therefore
rejects H0 : FX = FY in favour of H2A : Y ≥st X
If, however, the alternative is

H1A : X ≥st Y , then the median test reject H0 for small values of V .

For two sided alternative we use two sided test.

Alternative Rejection Region p-value

H1A : X ≥st Y
or

MX > MY

V ≤ cα PH0(V ≤ V0)

H2A : X ≤st Y
or

MX < MY

V ≥ c′α PH0(V ≥ V0)

H3A : FX(x) 6= FY (x)
or

MY 6= MX

for some x ∈ R V ≤ c′α
or

V ≥ c′α

2× (smallest of the above)
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Where cα and c′α are respectively, the largest and the smallest integers such that PH0(V ≤ cα) ≤ α
and PH0(V ≥ c′α) ≤ α, c and c′ are two integers, c < c′ such that PH0(V ≤ c) + PH0(V ≥ c′) ≤ α and V0
is the observed value of the median test statistic V .

Null Distribution of V :

Case (i) : m+ n = 2p, p ∈ N

PH0(V = v) = PH0( exactly v of the x′is ≤ combined median )

=


(
m
v

)(
n
p−v

)(
m+n
p

) v = 0, 1, 2, ...,min(m, p)

0 otherwise

Case (ii) : m+ n = 2p+ 1, p ∈ N

Here (m+n+1
2

)th value is the median in the combined sample, and

PH0(V = v) = PH0(exactly v of the xi’s are below (p+ 1)thvalue in the ordered arrangement)

Remark:

1. Under H0, we accept [m/2] values of x above “δ” and [m/2] values of x below “δ” . Similar is the
for y. One can, therefore use the χ2- test of significance with 1 d.f. for testing against the both
sided alternative.

No. of X’s No. of Y ’s Total
> δ m1; expected: (m/2) n1; excpected:(n/2) m1 + n1

< δ m2; expected: (m/2) n2; expected : (n/2) m2+ n2

m n m+ n

2. The test can be easily generalised to test for H0 : pth order percentile of the two distributions are
equal. Under H0, one would expect [mp] obserevations of x below the pth percentile and m− [mp]
observations above the pth percentile.

Similar for y.

I Confidence Interval (Median Test) :

H0 : FX(x) = FY (x) ∀x ∈ R Vs. H1 : FX(x) 6= FY (x) for some x ∈ R
Equivalently,
H0 : θ = 0 Vs. H1 : θ 6= 0, where θ is the shift in the location parameter.
(Because of the assumption that the only difference could be due to the location parameter)

I Test Statistic :

V =No. of observed values of X that are less than
the sample median of the combined sample.
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I Rejection Region : (At α level of significance)

Reject H0 in favour of H1 at α level of significance if either V ≤ c or V ≥ c′, when c and c′ are chosen
such that,

PrH0{V ≤ c}+ PrH0{V ≥ c′} =≤ α

• Q. PrH0(V = v) =?

For m+ n = 2p , p ∈ N
The median is any value between the pth and (p+ 1)th ordered values.

PHo(V = v) =



 m

v


 n

p− v


 m+ n

p


for 0 ≤ v ≤ min{m, p}

0 otherwise

For m+ n = 2p+ 1, p ∈ N, the median is the (p− 1)th value.

PH0(V = v) =



 m

v


 n

p− v


 m+ n

p


for v = 0, 1, 2, ....,min{m, p}

0 otherwise

Data : X1, X2, ..., Xn; Y1, Y2, ....., Yn

Target : To find CI for the shift parameter.
If θ were known we could form the derived random variablesX1, X2, ....., Xn and Y1−θ, Y2−θ, ....., Yn−

θ and these would constitute samples from identical populations.
From (1) it is clear that for α level of significance, the corresponding acceptance region for µ is

[c+ 1, c′ − 1]. Making use of this fact we shall find 100(1− α)% C.I. for θ.
Remember 100(1− α) CI for θ is all those values of θ for which H0 will be accepted at significance

level α.

Method :
Order the two derived samples respectively from smallest to largest as X(1), X(2), ....., X(n) and Y(1)−

θ, Y(2) − θ, ....., Y(n) − θ

Let p =
m+ n

2
or

m+ n− 1

2
according as (m+ n) is even or odd.

The p smallest observations of N = m + n total are made up of exactly iX and (p − i)Y variables
if each of the set X(1), X(2), ....., X(i), Y(1) − θ, Y(2) − θ, ....., Y(p−i) − θ is less than each observation of the
set X(i+1), ..., X(m), y(p−i+1) − θ, ..., y(n) − θ.
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Eg:

Let m = 7, n = 8
here m+ n = 15 (an odd no.)
∴ p = m+n−2

2
= 15−1

2
= 7

⇒ 7 observations in the combined sample are less than the sample median of the combined sample.
Let us assume that these 3 observations from “(Y − θ)” sample less tha =n the combined sample

median. i.e., i = 3, p− i = 4
The corresponding observations of first set are X(1), X(2), X(3), y(1) − θ, y(2) − θ, y(3) − θ.
Second set : X(4), X(5), X(6), X(7), y(5) − θ, y(6) − θ, y(7) − θ, y(8) − θ.
The value of “i” is atleast (c+1) iff for i = c+1, the largest X in the first set is less than the smalesst

Y in the second set. i.e.,
X(c+1) < Y(p−c) − θ

Proof :
Let us assume that i ≥ c+ 1

Target :
To prove that for i = c+ 1,

X(c+1) < Y(p−c) − θ

If i = c+ 1,

First set : X(1), X(2), ..., X(c), X(c+1), Y(1), Y(2), ..., Y(p−(c+1)) − θ
Second set : X(c+2), X(c+3), ..., X(m), Y(p−c) − θ, Y(p−(c−1)) − θ, ..., Y(n) − θ
Clearly, X(c+1) < Y(p−c) − θ

Also if, i = c+ 2,

First set : X(1), X(2), ..., X(c), X(c+1), X(c+2), Y(1), Y(2), ..., Y(p−(c+2)) − θ
Second set : X(c+3), X(c+4), ..., X(m), Y(p−(c+1)) − θ, Y(p−c) − θ, ..., Y(n) − θ
Clearly, X(c+2) < Y(p−(c+1)) − θ

< Y(p−c) − θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

Also, X(c+1) < X(c+2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

Combining (iii) and (iv),
X(c+1) < Y(p−c) − θ

Conclusion : Whenever i ≥ c+ 1, X(c+1) < Y(p−c) − θ
Now, suppose assume that X(c+1) < Y(p−c) − θ

Target :
To prove that, i ≥ c+ 1
Suppose not. i.e., assume i < c+ 1
In particular, take i = c.
Then, first set : X(1), X(2), ..., X(c−1), X(c)

Y(1) − θ, Y(2) − θ, ..., Y(p−1) − θ
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Second set : X(c+1), X(c+2), ..., X(m)

Yp−(c−1) − θ, Yp−(c−2) − θ, ..., Y(n) − θ
Clearly, X(c+1) > Y(p−c) − θ
Which is a contradiction to the fact that X(c+1) < Y(p−c) − θ
∴ Our assumption that i = c is false.
Similarly , we can S.T. the assumption “i < c” is false too.
“i” should at least c+ 1
Hence the result.
Similarly, X(i) > Y(p−c′+1) − θ can be seen to be a n.a.s.c. for having atmost (c′ − 1) X observations

among the p smallest of the total (m+ n) (Exercise)
∴ We accept H0 at significance level α if

X(c+1) < Y(p−c) − θ and
X(c′) > Y(p−c′+1) − θ

or equivalently, Y(p−c) −X(c+1) > θ and
Y(p−c′+1) −X(c′) < θ

∴ The desired confidence interval is
(
Y(p−c′+1) −X(c′), Y(p−c′+1) −X(c′)

)
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I. Linear Rank Statistic and General Two Sample
Problem

X1, X2, . . . , Xm ↘
Y1, Y2, . . . , Yn ↗ Two independent random samples from populations

with continuous CDFs FX and FY respectively.

H0 : FX(x) = FY (x) ∀x ∈ R
Let F (·) be their common but nunspecified CDF.
Let N = m+ n

I Definition : (Rank of an observation in the combined sample)

Assumption : No Ties.

rXY (xi) =
m∑
k=1

S(xi − xk) +
n∑
k=1

S(xi − yk)

& rXY (xi) =
m∑
k=1

S(yi − xk) +
n∑
k=1

S(yi − yk)

where, S(u) =

{
0, if u < 0

1, if u ≥ 0

Combined ordered sample can be indicated by a vector of indicator variables, Z˜ = (Z1, Z2, . . . , ZN)
where

Zi =

1,
if i′th ordered observation in combined
sample comes from X sample

0, otherwise
,∀i = 1(1)N

The rank of an observation for which Zi is indicator is “i”. Thereforethe vector Z˜ indicates the rank-
order statistics of the combined samples and in addition identifies the sample to which the observation
belongs.

E.g. Let (X1, X2, X3, X4) = (2, 9, 3, 4) and (Y1, Y2, Y3) = (1, 6, 10). Here m = 4 and n = 3.
The combined ordered sample (1, 2, 3, 4, 6, 9, 10) or (Y1, X1, X3, X4, Y2, X2, Y3).
∴ Z˜ = (0, 1, 1, 1, 0, 1, 0)
Here Z6 = 1.
∴ The corresponding observations belongs to Xsamples and it is X2.

∴ rXY (X2) = 6
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I Definition : (Linear Rank Statistic)

A linear rank statistic TN(·) is a linear function of the indicator variables Z˜ , i.e. TN(Z˜) =
N∑
i=1

aiZi,

where ai are given constants called weights or scores.

Remark : In order to study test based on linear rank statistic TN(·), one needs to know their
distributional properties.

Result : Under H0 : FX(x) = FY (x) = F (x) ∀x ∈ R, we have for i, j = 1, 2, 3, . . . , N ,

(i) E(Zi) =
m

N

(ii) V ar(Zi) =
mn

N2

(iii) cov(Zi, Zj) =
−mn

N2(N − 1)
∀i 6= j

Proof :
Clearly, Zi ∼ Ber(1,

m

N
) under H0 for i = 1, 2, 3, . . . , N .

∴ EH0(Zi) = PrH0{Zi = 1}

=
m

N

and V arH0(Zi) =
mn

N2
for i 6= j

EH0(ZiZj) = PH0(Zi = 1 ∩ Zj = 1)

=

(
m
2

)
(
N
2

)
=
m(m− 1)

N(N − 1)

∴ cov(Zi, Zj) = E(ZiEj)− (E(Zi))
2

=
m(m− 1)

N(N − 1)
− (

m

N
)2

=
−mn

N2(N − 1)

Result : Under H0 : FX(x) = FY (x) = F (x), say ∀x ∈ R
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E(TN) = m

N∑
i=1

ai
N

& V ar(TN) =
mn

N2(N − 1)

N N∑
i=1

a2i −

(
N∑
i=1

ai

)2


=
mn

N(N − 1)

N∑
i=1

(ai − ā)2 where ā =
1

N

N∑
i=1

ai

Proof :

EH0(TN) = EH0

(
N∑
i=1

aiZi

)
=

N∑
i=1

aiEH0(Zi)

=
N∑
i=1

ai
m

N

= m
N

N∑
i=1

ai

V arH0(TN) = V arH0

(
N∑
i=1

aiZi

)

=
N∑
i=1

V arH0(aiZi)+
∑∑

i 6=j

aiajcovH0(Zi, Zj)

=
N∑
i=1

a2iV arH0(Zi)+
∑∑

i 6=j

aiajcovH0(Zi, Zj)

=

mn
N∑
i=1

a2i

N2
−

mn
∑∑

i 6=j

a2i

N2(N − 1)

=
mn

N2(N − 1)

[
(N − 1)

N∑
i=1

a2i −
∑∑

i 6=j

aiaj

]

=
mn

N2(N − 1)

[
N

N∑
i=1

a2i −
N∑
i=1

a2i −
∑∑

i 6=j

aiaj

]

=
mn

N2(N − 1)

N N∑
i=1

a2i −

(
N∑
i=1

ai

)2

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=
mn

N2(N − 1)

[
N

N∑
i=1

a2i − (Nā)2
]

=
mn

N(N − 1)

[
N∑
i=1

a2i −Nā2
]

=
mn

N(N − 1)

[
N∑
i=1

(ai − ā)2

]

Result :

If BN =
N∑
i=1

biZi and TN =
N∑
i=1

aiZi are two linear rank statistics, under H0, then

cov(BN , TN) =
mn

N2(N − 1)

(
N

N∑
i=1

aibi −
N∑
i=1

ai

N∑
i=1

bi

)

Remarks :

1. The result discussed so far help us in finding the exact moment under H0 for any linear rank
statistic.

2. The exact null distribution of TN depends on the probability of the vector Z.

I Null Distribution of TN :

There are
(
N
m

)
many distinguishable Z˜ vectors (such that in each such vector there are m ones and n

zeros) and all those vectors are equally likely under H0.
Therefore, the probability of any such vector (specific vector with particular arrangement of m ones

and n zeros) is
1(
N
m

) .

• Q. What is PH0{TN(Z) = k} for any k ∈ R?
Ans : First we need to find the number of 2 vectors that lead to the constant ”TN(Z) = k”. Let
t(k) be the total no of arrangements of mX and nY random variables such that TN(Z) = k. All
these arrangements are equally likely and obviously mutually eclusive.

∴ PH0(TN(Z) = k) =
t(k)(
N
m

)
Remarks :

1. The tediousness of enumerations increases rapidly as m and n increases.

2. When the null distribution of LRS is symmetric, only one half of the distribution needs to be
generated.

3. The statistic TN(Z) is symmetric about its mean µ if ∀k 6= 0, P (TN(Z)−µ = k) = P (TN(Z)−µ =
−k).
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I Important results :

1. The null distribution of TN(Z) is symmetric about its mean µ = m
n

n∑
i=1

ai whenever the weights

satisfy the relation ai + aN−i+1 = c where c is constant ∀i = 1, 2, ..., N

2. The null distribution of TN(Z) is symmetric about its mean for any set of weights if m = n = N
2
.

3. The null distribution of TN(Z) is symmetric about its mean µ if N is even and the weights are
ai = i for i ≤ N

2
and ai = N − i+ 1 for i > N

2
.

I The Wilcoxon Rank-Sum Test :

Data :
Consists of two random samples. A sample from the control population and independent sample

from the treatment population.

X1, X2, ..., Xm

Y1, Y2, ..., Yn

Target :
To investigate the presence of a treatment effect ”θ”, that results in a shift of location.

Assumptions :

1. The observationsX1, X2, ..., Xm are a random sample from population 1; the observations Y1, Y2, ..., Yn
are a random sample from population 2.

2. The X ′s and Y ′s are mutually independent.

3. Population 1 and Population 2 are continuous populations.

Let FX(.) be the cdf of population 1 and let FY (.) be the cdf of population 2 .
H0 : FX(x) = FY (x) = F (x) ∀xεR
i.e., there is no treatment effect
i.e., the samples can be thought of as a single sample from one population.
i.e., θ = 0.
H1 : FY (x) = FX(x− θ) ∀xεR and some θ 6= 0
Functionally same, but shifted to the left if θ < 0 and shifted to the right if θ > 0.
Y ≥st X when θ > 0
Y ≤st X when θ < 0
X and Y are not identically distributed when θ 6= 0.

• Q. What if Fx is CDF of normal?

Think
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So,
H1A : θ < 0 or X ≥st Y
H2A : θ > 0 or X ≤st Y
H3A : θ 6= 0

Logic: The ranks of X’s in the combined ordered arrangement of the two samples will generally be
larger than the ranks of Y ’s if the median of X population exceeds the median of Y population.

Wilcoxon(1945) proposed a test where we accept H1A : θ < 0 ( or X ≥st Y ) , if the sums of the ranks
of the X’s is too large, or H2A : θ > 0 ( X ≤st Y ) if the sums of the ranks of X’s is too samll, and the
two sided alternative H3A : θ 6= 0 , if the sums of the ranks of the X’s is either too large or too small.

I Test Statistic :

WN =
N∑
i=1

izi

(i.e., here ai = i, ∀i = 1, ..., N)
(Recall the definition of zi )

If there are no ties , the mean and variance of WN under H0are

EH0(WN) =
m

n

N∑
i=1

i =
m(N + 1)

2

V arH0(WN) =
mn

N(N + 1)
[
N∑
i=1

(ai −
−
a)2]

Here, ai = i ∀i = 1, 2, . . .

∴ V arH0(WN) =
mn(N + 1)

12
(Verify)

Also , ai + aN−i+1 = i+N − i+ 1 = N + 1︸ ︷︷ ︸
Constant

,∀i = 1, 2, ...

∴ The distribution of WN is symmetric about its mean under H0.

Ifm ≤ n,Wn has a minimum value of
M∑
i=1

i =
m(m+ 1)

2
and a maximum value of

N∑
i=N−m+1

m(2N −m+ 1)

2

m = 3 and n = 4

• Q. S.T. the range of WN will be between 6 and 18.

• Q. Is the distribution of WN symmetric about 12.

• Q. Find the null distribution of WN .

The appropriate rejection required and p values for m ≤ n ≥ 10 tables are provided-
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Alternative Rejection Criteria p- values

θ < 0(X ≥st Y ) WN ≥ Wα PH0{WN > Wα}

θ > 0(X ≤st Y ) WN ≤ Wα PH0{WN ≤ Wα}

θ 6= 0 WN ≥ Wαor WN ≤ Wα 2(smaller of the above)
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J. The Mann-Whitney U Test

Based on the idea that the particular pattern exhibited by the combined arrangement of the X and Y
random variables in increasing order of magnitude provides information about the relationship between
their populations.

Here we consider the magnitudes of, say, the Y ’s in relation to the X’s, that is, the position of the
Y ’s in the combined ordered sequence.

A sample pattern of arrangement where most of the Y ’s are greater than most of the X’s, or vice
versa, would be evidence against a random mixing and thus tend to discredit the null hypothesis of
identical distributions.

I Test Statistic :

U = The no. of times a Y precedes an X in the combined
ordered arrangement of the two independent random
samples X1, X2, . . . , Xm & Y1, Y2, . . . , Yn in a single
sequence of m+ n = N variables increasing in magnitude.

Assumptions : Both the populations are continuous. Therefore Pr{Xi = Yj} = 0 ∀i 6= j.

Let

Dij =

{
1 if Yj < Xi

0 if Yj > Xi

for i = 1, 2, . . . ,m

j = 1, 2, . . . , n

∴ U =
m∑
i=1

n∑
j=1

Dij

Recall :

H0 : FX(x) = FY (x) ∀x ∈ R

H1A : FX(x) ≤ FY (x) ∀x ∈ R
& FX(x) ≤ FY (x) for some x ∈ R
i.e. X ≥st Y

H2A : FX(x) ≥ FY (x) ∀x ∈ R
& FX(x) > FY (x) for some x ∈ R
i.e. Y ≥st X

H3A : FX(x) 6= FY (x) for some x ∈ R
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I Rejection Criteria :

We reject H0 in favour of H1A for larger values of U . Similarly we reject H0 in favour of H2A for smaller
values of U .

For H0Vs. H3A, we reject H0 if either U is too small or too large.

Let us consider the problem

H0 :FX(x) = FY (x) ∀x ∈ R
V s. H2A :FY (x) ≤ FX(x) ∀x ∈ R

FY (x) < FX(x) for some x ∈ R

Let

p = P (Y < X)

=

∞̂

−∞

xˆ

−∞

fXY (x, y)dydx

=

∞̂

−∞

xˆ

−∞

fX(x)fY (y)dydx

=

∞̂

−∞

FY (x)fX(x)dx

=

∞̂

−∞

FY (x)dFX(x)

Under H0, p = 0.5

i.e., p =

∞̂

−∞

FY (x)dFX(x) = 0.5

Under H2A, p < 0.5

Thus the hypothesis can be reqritten as H0 : p = 0.5 vs. H2A : p < 0.5
Clearly

Dij ∼ Ber(p)

∴ E(Dij) = p = E(D2
ij)

and V ar(Dij) = p(1− p)

Also

cov(Dij, Dik) = 0 for i 6= j

cov
j 6=k

(Dij, Dik) = p1 − p2

cov
i 6=h

(Dij, Dhj) = p2 − p2
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where

p1 = P (Yj < Xi ∩ Yk < Xi)

= P (Yj&Yk < Xi)

=

ˆ ∞
−∞

[FY (x)]2dFX(x)

[ Reason :

P (Yj&Yk < Xi)

=

∞̂

−∞

xˆ

−∞

xˆ

−∞

fXiYjYk(x, yj, yk)dyjdykdx

=

∞̂

−∞

xˆ

−∞

xˆ

−∞

fXi(x)fYj(yj)fYk(yk)dyjdykdx

=

∞̂

−∞

xˆ

−∞

FY (x)fYk(yk)fXi(x)dykdx

=

∞̂

−∞

FY (x)FY (x)fXi(x)dx

=

∞̂

−∞

[FY (x)]2fXi(x)dx

=

∞̂

−∞

[FY (x)]2fX(x)dx ]

Similarly p2 =
∞́

−∞
(1− FX(y))2dFY (y)

Recall :

U =
m∑
i=1

n∑
j=i

Dij

∴ E(U) =
m∑
i=1

n∑
j=i

E(Dij)

= mnp

Also

V ar(U) =
m∑
i=1

n∑
j=i

V ar(Dij) +
m∑
i=1

∑∑
1≤j 6=k≤n

cov(Dij, Dik)

+
n∑
j=1

∑∑
1≤i 6=h≤m

cov(Dij, Dhj) +
∑∑

1≤i 6=h≤m

∑∑
1≤j 6=k≤n

cov(Dij, Dhk)

= mnp(1− p) +mn(n− 1)(p1 − p2) + nm(m− 1)(p2 − p2)
= mn[p− p2(N − 1) + (n− 1)p1 + (m− 1)p2]
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Null Distribution of U :

under H0, each of the
(
m+ n
m

)
arrangements of the random variables into a combined sequences

occurs with equal probability, so that

fU(u) = P (U = u) =
rm,n(u)(
m+ n
m

)
where rm,n(u) is the number of distinguishable arrangements of the mX and nY random variables

such that in each sequence the number of times a Y proceeds on X is exactly u.
Range of U : 0, 1, ...,mn

I Claim : The null distribution of U is symmetric about mean mn
2
.

Proof : For every particular arrangement of z of the mx and ny letters, define the conjugate
arrangements of z′ as the sequence z written backward. In other words, if z denotes a set of numbers
written from smallest to largest, z′ denotes the same numbers written from largest to smallest.

Every y that proceeds an x in z then follows that x in z′, so that if u is the value of the Mann-Whitney
statistic for z, mn− u is the value for z′.
∴ Under H0, rm,n(u) = rn,m(mn− u) or equivalently,
P (U − mn

2
= u) = P (U = mn

2
+ u) = P (U = mn− (mn

2
− u)) = P (U = mn

2
− u) = P (U − mn

2
= u))

∴ U is symmetric about
mn

2
under H0.

Benefit : Only lower tail critical values need to be found for either a one or two-sided test.

Let U ′ =
m∑
i=1

n∑
j=1

(1−Dij)

Alternative Rejection region p-value

p < 0.5 or Y ≥
st
X U ≤ cα PH0(U ≤ u0)

p > 0.5 or Y ≤
st
X U ′ ≤ cα PH0(U

′ ≤ u0)

p 6= 0.5 or FY (x) 6= FX(x) for some x ∈ R U ≤ cα/2 w U ′ ≤ cα/2 2(smaller of the above )

I The problem of ties :

If ties occur within one or both samples, a unique value of U is obtained. However, if one or more X is
tied with one or more Y , our definition requires that the ties be broken in some way.

The conservative approach may be adapted, which means that all ties are broken in all possible ways
and the largest resulting value of U (or U ′) is used in reaching the decision.
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Another approach :
Define,

UT =
m∑
i=1

n∑
j=1

Dij

where, Dij =


1 Xi > Yj

0.5 Xi = Yj

0 Xi < Yj

Let

p+ = Pr{x > Y }
& p− = Pr{X < Y }

E(UT ) = mn(p+ − p−) (verify)

Under H0, p
+ = p−

∴ EH0(UT ) = 0

Also

V ar(UT |H0) =
mn(N + 1)

12

[
1−

∑
t(t2 + 1)

N(N2 − 1)

]
where + denoted the multiplicity of a tie and the sum is extended over all t ties,

I Confidence Interval for θ :

FY (x) = FX(x− θ) ∀x & some θ ∈ R

Under this assumption , the sample observations X1, X2, . . . , Xm and Y1− θ, Y2− θ, . . . , Yn− θ come
from identical populations.

A CI for θ with confidence coefficient 1− α consists of all those values of θ from which the H0 will
be accepted at significance level α.

The random variable U denotes the number of times a Y − θprecedes an X, that is, the number of
pairs (Xi, Yj − θ), i = 1, 2, . . . ,m and j = 1, 2, . . . , n for which Xi > Yj − θ or equivalently Yj −Xi < θ.

If a table of critical values for a two sided U test at level α gives a rejection region U ≤ k , say, we
reject H0 when no more than k differences are less than θ. The total number of differences Yj −Xi is
mn. If these differences are ordered from smallest to largest according to actual maginitude, denoted by
D(1), D(2), ..., D(mn) , there are exactly k differences less than θ if θ is the (k + 1)st - ordered difference,
D(k+1) . Any number exceeding this (k + 1) st difference will produce more than k differences less than
θ. Therefore, the lower limit of the confidence interval for θ is D(k+1). Similarly , since the probability
distribution of U is symmetric, an upper confidence limit is given by that difference which is (k + 1)th

from the largest, that is D(mn−k).
∴The confidence interval with confidence coefficient (1− α) is

(
D(k+1), D(mn−k)

)
E.g. -
m = 3, n = 5, α = 0.1
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Pr{u < 1} = 2/56 = 0.036

Pr{u < 2} =
4

56
= 0.071

∴ The critical value when α/2 = 0.05, is 1 with type-I error probability (exact) = 2× 0.036 = 0.072
The confidence interval is

(
D(2), D(14)

)
.

Example :

Data :

X : 1, 6, 7

Y : 2, 4, 9, 10, 12

α = 0.10, θ1 = 1, θ2 = 6, θ3 = 7
Show that exact type-I error probability is 0.928
Also CI is (-4,9).

I U and W are equivalent test statistics.

Proof :
Let

Dij =

{
1 , if.Yj < Xi

0 , if, Yj > Xi

U =
m∑
i=1

n∑
j=1

Dij

Also W =
m∑
i=1

Qi,where Qi = rank of Xi in the combined sample

Qi = Rank of Xiin the combined sample
= Number of Y ′j s < Xi + rank of Xi in X ′s

=
n∑
j=1

Dij + rank of Xi in X ′s

W =
m∑
i=1

Qi =
m∑
i=1

n∑
j=1

Dij +
n(n+ 1)

2
= U +

n(n+ 1)

2

55 Instructor: KC



Presidency University

K. The Kruskal-Wallis One-Way ANOVA Test
Here, the interest is centered on the relative locations (median) of three or more populations.

Data : The data consist of N =
k∑
j=1

nj observations, with nj observations from the jth popula-

tion/treatment, j = 1, 2, . . . , k.

:::::::::::::
Treatments

1 2 · · · k

X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

...
...

Xn11 Xn22 · · · Xnkk

Assumptions :

1. The N random variables {X1j, X2j, . . . , Xnjj}, j = 1, 2, . . . , k are mutually independent.

2. ∀j ∈ {1, 2, . . . , k}, the nj variables {X1j, X2j, . . . , Xnjj} are a random sample from a continuous
distribution with distribution function Fj.

3. The distribution functions F1, F2, . . . , Fk are connected through the relationship Fj(t) = F (t −
θj), −∞ < t <∞ for j = 1, 2, . . . , k, where F is a distribution function for a continuous distribu-
tion with unknown median θ and θj is the unknown treatment effect for the jth population.

H0 :θ1 = θ2 = . . . = θk

Or, equivalently, H0 :F1(x) = F2(x) = . . . = Fk(x) ∀x

Vs. H1 :θi 6= θj for atleast one i 6= j

Or, equivalently, H1 :Fi(x) 6= Fj(x) for some x ∈ R and for atleast one i 6= j.

Remark : In classical statistics, the usual test for this problem is the ANOVA test for a one-way
classification.

Method : Since under the H0, we have essentially a single sample of size N from the common
population, combine the N observations into a single observed sequence from smallest to largest, keeping
track of which observation is from which sample and assign the ranks 1, 2, ..., N to the sequence.

Under H0, the total sum of the ranks
n∑
j=1

j =
N(N + 1)

2
would be divided proportionally according

to sample size among the k samples. For the sample, which contains nj observations, the expected sum

of ranks would be
nj
N

N(N + 1)

2
=
nj(N + 1)

2
.
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Denote the actual sum of ranks arranged to the elements in the jth sample by Rj.

i.e. Rj =

nj∑
i=1

rij j = 1, 2, . . . , k

where rij denotes the rank of Xij in the joint ranking.

Also, let R.j =
Rj

nj
j = 1, 2, . . . , k

A reasonable test statistic is -

S =
k∑
j=1

(
Rj −

nj(N + 1)

2

)2

H0 is rejected for large values of S.

I Null distribution of S : (no ties case)

Under H0, all N !(
k∏
j=1

(nj)!

) asignments of of n1 ranks to treatment 1 observations, n2 ranks to treatment 2

observations,..., nk ranks to the treatment k observations are equally likely.
Each of the possibilities must be enumerated and the value of S calculated for each.
If t(S) denotes the number of assignments with particular value “s” calculated from the equation

S =
k∑
j=1

(Rj −
nj(N + 1)

2
)2, then

PrH0(S = s) =
t(S)
N !(

k∏
j=1

(nj)!

) = t(S)
k∏
j=1

nj!

N !

I The Kruskall-Wallis test statistic :

Kruskall and Wallis (1952) proposed a test statistic, which is a weighted sum of squares of deviations
with the reciprocals of the respective sample sizes used as weights. And the test statistic is -

H =
12

N(N + 1)

k∑
j=1

1

nj
(Rj −

nj(N + 1)

2
)2

=
12

N(N + 1)

k∑
j=1

nj(R.j −
(N + 1)

2
)2

=

[
12

N(N + 1)

k∑
j=1

Rj
2

nj

]
− 3(N + 1)

Remarks :

1. H and S are equivalent test criteria only for all ni equal.

2. Reject H0 if H ≥ hα; otherwise do not reject H0 where hα is chosen such that PrH0(H ≥ hα) ≤ α

57 Instructor: KC



Presidency University

Some Moments :

EH0 (R.j) = EH0

(
Rj

nj

)
=

1

nj
EH0 (Rj)

=
1

nj
EH0

(
nj∑
i=1

rij

)

=
1

nj

nj∑
i=1

EH0 (rij)

=
1

nj
.nj.

(N + 1)

2

=
(N + 1)

2

Similarly , one can show that ,

V arH0(Rij) =
(N + 1)(N − nj)

12nj

Cov(R.i, R.j) = −N + 1

12

I Assymptotic Distribution :

If njis large, the CLT allows us to approx. the distribution of

zj =
R.j −

(N + 1)

2√
(N + 1)(N − nj)/12nj

, by the standard normal.
Consequnetly, z2j

approx.∼ χ2
(1), j = 1, 2, ..., k

But zj are not independent random variables since
k∑
j=1

njR.j =
N(N + 1)

2

Kruskal (1952) showed that under H0, if no nj is very small, the random variable

k∑
j=1

N − nj
N

z2j = H
approx.∼ χ2

(k−1)

The approx size α rejection is H ≥ χ2
α,k−1

I The problem of ties :

When two or more observations are tied within a sample , the value of H is the same regardless of the
method used to resolve the ties since the rank sum is not affected.
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When ties occurs across samples , the mid rank method is geenrally used. Alternatively, the ties can
be broken in the way that is least conductive to rejection of H0for a corrective test.

Here,

EH0(R.j) =
N + 1

2

and V arH0(R.j) =
σ2(N − nj)
nj(N − 1)

where , σ2 =
N2 − 1

12
−
∑
t(t2 − 1)

12
, where the sum is over all sets of ties in the population.

† ∗ ∗ ∗ ∗ THE END ∗ ∗ ∗ ∗ †
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